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Abstract

1. Orthoptera (hereinafter termed ‘grasshoppers’) are of great functional significance

since they are the main arthropod consumers in grasslands and an important food

source for medium-sized insectivorous vertebrates. However, research investigat-

ing the effects of extreme weather events on the abundance of grasshoppers has

lacked thus far.

2. Here, we studied the effects of summer drought on grasshopper abundance in tem-

perate semi-natural grasslands with low land-use intensity. We considered calcare-

ous and mesic grasslands; per type, we randomly selected 27 plots.

3. Our study revealed distinct differences in habitat characteristics between plots of

calcareous and mesic grasslands. Overall, calcareous grasslands had a more hetero-

geneous and shorter vegetation than mesic grasslands. Consequently, species rich-

ness was higher in calcareous grasslands. By contrast, grasshopper abundance did

not differ between the two types.

4. Summer temperature was the key driver of grasshopper abundance. Abundance

was lowest in grasslands that were situated at lower elevations with higher summer

temperatures and that were characterised by the strongest effects of summer

drought. Its influence even overrode the differences in habitat characteristics

between calcareous and mesic grasslands.

5. Extreme weather events, such as summer droughts, are expected to become more

frequent due to global warming. Accordingly, suitable conservation strategies that

increase the resistance and resilience of temperate semi-natural grasslands and

their insect assemblages against summer drought are highly needed. Based on our

study, increasing habitat heterogeneity seems to be the most effective way to miti-

gate the negative effects of summer drought.
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INTRODUCTION

During the last two centuries, humankind has modified the environ-

ment globally at an unprecedented rate (Foley et al., 2005; Rockström

et al., 2009). Accordingly, biodiversity is in sharp decline and scientists

suspect that we are heading for a sixth mass extinction (Barnosky

et al., 2011; Dirzo et al., 2014). The dramatic loss of species jeopardises

ecosystem functioning and human well-being on our planet (Cardoso

et al., 2020; Dirzo et al., 2014; IPBES, 2019; Ripple et al., 2017). There-

fore, halting the decline is one of the major challenges for humanity.

Insects are the most speciose taxon on earth (Stork, 2018). How-

ever, their decline is much faster than those of most other organisms

(e.g. plants or vertebrates) (Cardoso et al., 2020; Sánchez-Bayo &

Wyckhuys, 2019; Thomas et al., 2004; Wagner, 2020). The loss of

insects has cascading effects on various other taxa within ecosystems

(Cardoso et al., 2020; Wagner, 2020). For example, the abundance of

insect prey is strongly interrelated with the population size of

medium-sized insectivorous species at higher trophic levels (e.g. birds)

(Fartmann et al., 2021a, 2021b; González del Portillo et al., 2021;

Hebda et al., 2019). As has been shown for biodiversity in general,

land-use and climate change are the main drivers of declines in insects

too (Cardoso et al., 2020; IPBES, 2019; Wagner, 2020).

Nutrient-poor semi-natural grasslands belong to the most species-

rich ecosystems across Europe (Chytrý et al., 2015; Dengler et al., 2014;

Feurdean et al., 2018). However, with ongoing industrialisation of agri-

cultural land use, their area has strongly declined (Fartmann et al., 2021a,

2021b; Poschlod & Braun-Reichert, 2017; WallisDeVries et al., 2002).

Additionally, the remaining grassland patches have often suffered from

habitat deterioration, mainly due to land-use intensification and aban-

donment. More recently, global warming has become another significant

threat for grassland biodiversity (De Keersmaecker et al., 2016; Fischer

et al., 2020; Vogel et al., 2012).

Orthoptera (hereinafter termed ‘grasshoppers’) are of great func-

tional significance since they are the main arthropod consumers in

grasslands (Samways, 2005) and an important food source for insec-

tivorous vertebrates (Fartmann et al., 2021a, 2021b; González del

Portillo et al., 2021; Hebda et al., 2019; Ingrisch & Köhler, 1998). This

is also true for Central Europe, where grasshopper assemblages are

usually species-poor but certain species may have a high abundance

(Ingrisch & Köhler, 1998). Moreover, they respond rapidly to alter-

ations in land use (Uchida & Ushimaru, 2014; Theron et al., 2022) and

climate (Fumy et al., 2020; Löffler et al., 2019; Poniatowski

et al., 2020). Consequently, they are well-established bioindicators for

environmental change in grassland ecosystems (Fartmann et al., 2012;

Sergeev, 2021). Recent studies from Western and Central Europe rev-

ealed combined effects of land use and climate change on grasshop-

per assemblage composition in temperate grasslands (Beckmann

et al., 2015; Poniatowski et al., 2012, 2020; Löffler et al., 2019, 2020;

Fumy et al., 2020; Fartmann et al., 2021a, 2021b). By contrast,

research investigating the effects of extreme weather events

(e.g., summer droughts, which are characteristic results of global

warming; IPCC, 2021) on the abundance of grasshoppers has lacked

thus far.

Here, we studied the effects of summer drought on grassland

grasshoppers across an elevation gradient within a Central European

landscape (Figure 1). We considered calcareous and mesic grasslands;

for each grassland type, we randomly selected 27 rectangular plots

with a total size of 500 m2. We compared the composition of grass-

hopper assemblages and environmental conditions between the two

grassland types at the habitat and landscape level. Moreover, we iden-

tified the key drivers of grasshopper abundance. Based on our results,

we derived evidence-based conservation measures to increase the

resistance and resilience of grasshopper assemblages to summer

drought in temperate semi-natural grasslands.

MATERIAL AND METHODS

Study area

The study area, the Diemel Valley (100–600 m a.s.l.), has an area of

about 460 km2 and is located at the border of the German federal

states of North Rhine-Westphalia and Hesse (Central Germany,

Figure 1). It exhibits �750 ha of semi-dry calcareous grasslands and

�250 ha of nutrient-poor mesic grasslands (Fartmann, 2004). The cli-

mate is suboceanic (Müller-Wille, 1981). Annual precipitation increases

with elevation from 732 to 948 mm, while annual temperature

decreases from 8.8�C to 7.9�C (long-term mean: 1981–2010; weather

station: Warburg [236 m a.s.l.] and Brilon [447 m a.s.l.], respectively;

German Meteorological Service, 2021). In order to account for possible

spatial autocorrelation, the study area was divided into seven subareas

according to elevation and landscape configuration (Figure 1).

Large parts of Central Europe, including the study area, were

characterised by severe summer droughts in 2018 and 2019 as a result of

substantial rainfall deficits and heat waves (Boergens et al., 2020;

European Drought Observatory, 2021). In 2020 (the study year), spring

and early summer (April–July) were also warmer and drier than average.

During that period temperatures were 0.43�C (weather station: Warburg)

and 0.70�C (weather station: Brilon) higher, respectively (reference: long-

term mean 1981–2010; GermanMeteorological Service, 2021). The rain-

fall deficit was most pronounced in the drier lower elevations of the study

area, reaching only 53% of the average values (weather station:Warburg);

the wetter upper elevations experienced 76% of the long-term mean

(weather station: Brilon). As a result, in lower elevations of the study area,

vegetation of calcareous grasslands and even those of mesic grasslands

partly started to wither already in June (own observation; see also Fischer

et al., 2020). By contrast, in upper elevations of the study area, grassland

plants were still vital at that time.

Sampling design

Plots

We studied two types of semi-natural grasslands with low land-use

intensity: (i) semi-dry calcareous grasslands (Gentiano-Koelerietum) and
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(ii) nutrient-poor mesic grasslands (Arrhenatheretum and nutrient-poor

stands of the Lolio-Cynosuretum) (Figure 2) (Fartmann, 2004). For each

grassland type, we randomly selected 27 rectangular plots with a total

size of 500 m2 within a randomly chosen grassland patch across the

elevation gradient of the study area (N = 54) (Figure 1).

Environmental conditions

Macroclimate

Characteristics of the local climate of each plot (mean summer [April–

September] precipitation and temperature) were derived from 1-km2

grid datasets of Germany (German Meteorological Service, 2021) that

contain 10-year (2010–2019) mean values (Table 1). The mean eleva-

tion (m a.s.l.) of the plots was calculated from topographic maps using

ArcGIS 10.2.

Landscape and habitat characteristics

For each plot, we assessed several parameters of landscape and habi-

tat characteristics (Table 1). The parameters of landscape characteris-

tics ‘patch size’ and ‘connectivity’ were determined on the basis of

aerial photographs using ArcGIS 10.2. We measured the connectivity

of the focal patch as the geometric mean of the edge-to-edge dis-

tance to the three nearest patches (Eichel & Fartmann, 2008; Scherer

et al., 2021). Distances from the focal patch to the three other patches

were computed using the proximity-analysis tool ‘near table’ in

ArcGIS 10.2.

We sampled parameters of habitat characteristics within the plot

once in mid-June 2020 (Table 1). In each plot, we ascertained environ-

mental parameters in a randomly selected undisturbed part of the plot

with a size of 3 � 3 m. We recorded the following parameters of hori-

zontal vegetation structure with an accuracy of 5%: cover of shrubs,

field layer, grasses, herbs, mosses, litter, bare ground and gravel. In

cases in which cover was above 95% or below 5%, 2.5% steps were

used. To calculate habitat heterogeneity, we counted the number of

the following habitat layers: shrubs, grasses, herbs, mosses, litter, bare

ground and gravel. We only considered layers with a minimum cover

of 5%. As a result, the values of the habitat-heterogeneity score in our

study ranged between 2 and 5 per plot. Furthermore, vertical vegeta-

tion structure was ascertained by measuring vegetation height at an

accuracy of 2.5 cm. Land use was classified into the three categories

‘pasture’, ‘meadow’ and ‘abandoned grassland’.

Grasshopper sampling

Grasshopper assemblages were recorded in each plot using a box

quadrat (1.41 � 1.41 m ≙ 2.0 m2), which ranks among the most accu-

rate sampling methods to ascertain species richness and abundance of

grasshoppers (Gardiner & Hill, 2006). To avoid edge effects (Schirmel

et al., 2010), the box quadrat was randomly dropped at 10 different

points in the centre of the plot, covering a total area of 20 m2 per plot

(Fartmann et al., 2012; Poniatowski & Fartmann, 2008). Sampling

F I GU R E 1 Location of the Diemel Valley and plots in Central Germany
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occurred twice per plot: in mid-June (mainly nymphs) and mid-July

(mainly adults), which is the phenology peak of nymphs and adults,

respectively, in Central Europe (Ingrisch & Köhler, 1998). Within the

box quadrat, grasshoppers were captured by sweep netting and hand.

Species identification was done in the field using Fischer et al. (2020).

The scientific nomenclature of the species follows Fischer

et al. (2020).

Statistical analysis

All statistical analyses were performed using R 3.4.1 (R Core Team,

2021). For all generalised linear mixed-effects models (GLMMs)

(R packages lme4; Bates et al., 2021) the variable ‘subarea’ was used

as a random factor (Crawley, 2007).

To detect differences in land use between plots of calcareous and

mesic grasslands, we conducted a χ 2 test. To identify indicator species

for each grassland type, an indicator-species analysis (de Cáceres &

Jansen, 2016; Dufrêne & Legendre, 1997) was carried out using grass-

hopper data from both sampling periods (June and July). Differences

in metric environmental parameters (Table 1) as well as in species rich-

ness (pooled for both sampling periods) (Figure 2) and abundance

(separately for June and July) (Figure 2) between calcareous and mesic

grasslands were analysed using GLMMs. Grassland type served as a

nominal fixed factor (predictor), and the analysed parameters were

used as dependent variables. Depending on the distribution of the

variables, proportional binomial (percentage data), Poisson (count

data) or Gaussian (for square-root- or log-transformed variables with

normal distribution) models were applied with the respective standard

(a)

(b)

(c)

F I GU R E 2 Mean values (�SE) of grasshopper species richness
(a) and grasshopper densities (June (b), July (c)) in plots of calcareous
and mesic grasslands (N = 54). Differences between the grassland
types were analysed using GLMMs with ‘subarea’ as a random factor.
n.s., not significant, p > 0.05, **p ≤ 0.01, ***p ≤ 0.001

T AB L E 1 Overview of sampled predictor parameters
(mean � SE; N = 54).

Parameter

Grassland type

pCalcareous Mesic

Macroclimate

Elevation a.s.l. (m) 269 � 14 293 � 21 n.s.

Summer precipitation (mm)a 396 � 5 412 � 7 n.s.

Summer temperature (�C)a 13.9 � 0.1 13.7 � 0.1 n.s.

Landscape characteristics

Patch size (ha) 9.9 � 2.0 12.3 � 2.9 n.s.

Patch connectivity (m)b 1580 � 411 1133 � 232 n.s.

Habitat characteristics

Habitat structure

Cover (%)

Shrubs 3.7 � 1.1 0.4 � 0.2 ***

Field layer 78.6 � 5.5 86.8 � 8.1 n.s.

Grasses 46.1 � 2.6 54.4 � 4.4 n.s.

Herbs 32.5 � 2.9 32.3 � 3.7 n.s.

Mosses 3.3 � 0.8 2.4 � 1.2 *

Litter 12.4 � 1.7 11.1 � 2.1 n.s.

Bare ground 9.3 � 1.1 5.2 � 1.0 *

Gravel 1.1 � 0.5 0.5 � 0.4 *

Habitat heterogeneity 3.30 � 0.14 2.52 � 0.20 **

Vegetation height (cm) 10.5 � 1.0 25.4 � 2.8 ***

Note: Differences between the grassland types were analysed using

GLMMs with ‘subarea’ as a random factor. Significant differences are

indicated by bold type. n.s., not significant, p > 0.05; *p ≤ 0.05;

**p ≤ 0.01; ***p ≤ 0.001.
aApril–September.
bDistance to the three nearest patches (geometric mean).
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link functions. To reduce overdispersion within the models (propor-

tional binomial/Poisson), observation-level random effects were

added as another random factor (Harrison, 2014, 2015). The overall

effect of the dependent variables on grassland type was analysed by

comparing the full models with reduced models without ‘grassland
type’ as the fixed factor and by applying likelihood-ratio tests.

GLMMs (negative-binomial) were calculated to detect those

environmental parameters that explain the abundance of grasshop-

pers in the two grassland types. To avoid model over-fitting,

strongly intercorrelated (Spearman rank correlation [rs]; jrsj > 0.5)

variables were excluded and only the most important variable was

used in GLMM analyses (Tables A2 and A3) (cf. Löffler &

Fartmann, 2017). Therefore, for the plots of calcareous grasslands,

patch connectivity, elevation, shrubs, field layer, herbs and litter

were excluded from the GLMM analyses (Table A2). For the plots of

mesic grasslands, elevation, summer precipitation, field layer,

grasses, gravel, habitat heterogeneity and vegetation height were

not entered into the models (Table A3). In order to increase model

robustness and identify the most important environmental parame-

ters, we conducted model averaging based on an information-

theoretic approach (Burnham & Anderson, 2002; Grueber

et al., 2011). Model averaging was done using the dredge function

(R package MuMIn; Bart�on, 2021) and included only top-ranked

models within ΔAICC <3 (Grueber et al., 2011).

RESULTS

Environmental conditions

Habitat characteristics differed, in contrast to macroclimate and land-

scape characteristics, between plots of calcareous and mesic grasslands

(Table 1). Overall, plots of calcareous grasslands had a more heteroge-

neous and shorter vegetation than those of mesic grasslands. Moreover,

the cover of shrubs, mosses, bare ground and gravel was higher. Land

use also differed (Table 2). Pastures clearly dominated in both grassland

types. However, one-tenth of the plots of calcareous grasslands were

abandoned and a quarter of the plots of mesic grasslands were used as

a meadow. By contrast, the other sampled parameters of habitat char-

acteristics did not differ between the two grassland types.

Grasshopper assemblages and response to
environmental conditions

Altogether, we caught 12,313 grasshopper individuals, 8666 nymphs

and 3647 adults, belonging to 18 species during the two sampling

periods (Table A1). The most widespread species were Chorthippus

biguttulus and Pseudochorthippus parallelus, accounting for 59% and

25%, respectively, of all individuals. The ratio of nymphs to adults was

13.8: 1 in June and 1: 2.1 in July. Plots of calcareous grasslands had a

T AB L E 2 Absolute and relative frequencies of the nominal variable ‘land use’ in plots of calcareous (N = 27) and Mesic grasslands (N = 27)

Grassland type

Calcareous Mesic

Parameter Absolute % Absolute % χ 2 df p

Land use 10.36 2 **

Pasture 24 88.9 20 74.1

Meadow 0 0 7 25.9

Abandoned 3 11.1 0 0

Note: Comparison between groups was done by χ 2 test. **p ≤ 0.01.

T AB L E 3 Results of indicator species analysis (ISA) (de Cáceres &
Jansen, 2016; Dufrêne & Legendre, 1997) for plots of calcareous and
mesic grasslands based on grasshopper densities in June and July
(Nplots = 54)

Species IV p

Grassland type

Calcareous Mesic

Chorthippus albomarginatus 5.6 n.s. 25/4 75/7

Chorthippus biguttulus 72.8 ** 73/100 27/93

Chorthippus brunneus 11.1 n.s. 100/11 0/0

Chrysochraon dispar 2.0 n.s. 45/4 55/4

Decticus verrucivorus 3.7 n.s. 100/4 0/0

Metrioptera brachyptera 33.5 *** 90/37 10/4

Myrmeleotettix maculatus 2.8 n.s. 25/7 75/4

Omocestus viridulus 13.2 n.s. 29/22 71/19

Phaneroptera falcata 34.0 * 83/41 17/15

Pholidoptera griseoaptera 24.4 n.s. 18/19 82/30

Pseudochorthippus parallelus 70.6 ** 21/85 79/89

Roeseliana roesellii 33.1 ** 19/7 81/41

Stenobothrus lineatus 86.9 *** 90/96 10/37

Stenobothrus stigmaticus 6.5 n.s. 12/4 88/7

Tetrix bipunctata 17.5 n.s. 95/19 5/4

Tetrix tenuicornis 32.9 n.s. 64/52 36/19

Tettigonia cantans 14.8 n.s. 0/0 100/15

Tettigonia viridissima 6.9 n.s. 38/11 63/11

Note: IV, indicator value; relative abundance comparing the two grassland

types/relative frequency (percentage of plots within each grassland type

with occurrence of the species). Grey-hatched: species are indicator

species for this grassland type. Significant values are indicated in bold

type. n.s., not significant, p > 0.05; **p ≤ 0.01; ***p ≤ 0.001.
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higher species richness than those of mesic grasslands (Figure 2). By

contrast, grasshopper densities (June and July) did not differ between

the two grassland types.

Both grassland types were characterised by indicator

species (Table 3). Chorthippus biguttulus, Metrioptera brachyptera,

Phaneroptera falcata and Stenobothrus lineatus were indicative for

plots of calcareous grasslands. By contrast, Pseudochorthippus

parallelus and Roeseliana roeselii were characteristic of plots of

mesic grasslands.

Summer temperature was the key driver of grasshopper abun-

dance in the GLMM analyses (Tables 4 and 5, Figure 3). In both grass-

land types and in both types of models (landscape and synthesis

model), abundance (June and July) was lowest in plots that were situ-

ated at lower elevations with higher summer temperatures (for

intercorrelations of the two variables, see Tables A2 and A3). In plots

of calcareous grasslands, none of the habitat characteristics affected

grasshopper abundance (Table 4). In plots of mesic grasslands, addi-

tionally, the cover of herbs, which was negatively correlated with the

cover of grasses (Table A3), had a positive effect in the habitat (June

and July) and synthesis model (July) (Table 5, Figure 3).

DISCUSSION

Our study revealed distinct differences in habitat characteristics

between plots of calcareous and mesic grasslands. Overall, calcareous

grasslands had a more heterogeneous and shorter vegetation than

mesic grasslands. Consequently, species richness was higher in

T AB L E 4 Model-averaging results (GLMM; negative binomial error structure): Relationship between grasshopper densities in June (a, c, e)
and July (b, d, f ), respectively, and environmental parameters in plots of calcareous grasslands (N = 27)

Parameter Estimate SE Z p

1. Landscape model

(a) June (R 2
m = 0.61, R 2

c = 0.61)

(Intercept) 32.06 9.45 3.30 ***

Summer temperature �1.78 0.50 3.42 ***

Summer precipitation �0.01 0.01 1.94 n.s.

(b) July (R 2
m = 0.42–0.44, R 2

c = 0.42–0.44)

(Intercept) 20.75 6.64 3.00 **

Summer temperature �1.18 0.40 2.82 **

Summer precipitation �0.00 0.00 0.43 n.s.

2. Habitat model

(c) June (R 2
m = 0.36–0.39, R 2

c = 0.65–0.66)

(Intercept) 4.15 0.70 5.71 ***

Habitat heterogeneity 0.22 0.18 1.18 n.s.

Bare ground 0.04 0.04 0.81 n.s.

Mosses �0.03 0.03 0.94 n.s.

Vegetation height �0.03 0.02 1.08 n.s.

(d) July (R 2
m = 0.21–0.40, R 2

c = 0.56–0.63)

(Intercept) 3.45 0.58 5.80 ***

Habitat heterogeneity 0.26 0.17 1.45 n.s.

Bare ground 0.05 0.02 1.81 n.s.

Mosses �0.04 0.03 1.25 n.s.

Gravel �0.05 0.05 1.04 n.s.

3. Synthesis model

(a) June (R 2
m = 0.45, R 2

c = 0.49)

(Intercept) 23.64 5.59 4.23 ***

Summer temperature �1.40 0.40 �3.47 ***

(b) July (R 2
m = 0.34, R2

c = 0.40)

(Intercept) 18.63 4.79 3.89 ***

Summer temperature �1.08 0.35 �3.13 **

Note: Model-averaged coefficients (conditional average) were derived from the top-ranked models (ΔAICC < 3). R 2
m, variance explained by fixed effects;

R 2
c, variance explained by both fixed and random effects (Nakagawa et al., 2017). n.s., not significant, p > 0.05; **p ≤ 0.01; ***p ≤ 0.001.
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calcareous grasslands. Surprisingly, however, grasshopper abundance

did not differ between the two grassland types. Summer temperature

was the key driver of grasshopper abundance. Abundance was statis-

tically lowest in grasslands that were situated at lower elevations with

higher summer temperatures.

All 18 detected grasshopper species in this study are characteris-

tic of grassland in Central Europe (Detzel, 1998; Poniatowski &

Fartmann, 2008; Schlumprecht & Waeber, 2003; Schulte, 2003). Addi-

tionally, the observed habitat preferences of the species, indicated by

the indicator species analysis, were also in line with literature. In par-

ticular, M. brachyptera and S. lineatus are known to exhibit strong pref-

erences for calcareous grasslands, and P. parallelus and R. roeselii for

mesic grasslands.

Calcareous grasslands are well-known for their high biodiversity,

especially richness of specialised plant and insect species (Diacon-Bolli

et al., 2012; Krämer et al., 2012; Poniatowski & Fartmann, 2008;

WallisDeVries et al., 2002). In line with this, compared with mesic

grasslands, calcareous grasslands had a higher overall grasshopper

species richness and more indicator species. We attribute this finding

to greater heterogeneity within plots of calcareous grasslands,

exhibiting a higher cover of shrubs, mosses, bare ground and gravel

(cf. Löffler & Fartmann, 2017; Schwarz & Fartmann, 2022).

Despite the differences in habitat characteristics, grasshopper

abundance did not differ between calcareous and mesic grasslands.

Grasshoppers are ectothermic organisms whose development time,

fecundity and lifespan critically depend on temperature (Chappell &

T AB L E 5 Model-averaging results (GLMM; negative binomial error structure): relationship between grasshopper densities in June (a, c, e) and
July (b, d, f), respectively, and environmental parameters in plots of mesic grasslands (N = 27)

Parameter Estimate SE Z p

1. Landscape model

(a) June (R 2
m = 0.32, R 2

c = 0.23–0.32)

(Intercept) 9.72 4.65 2.05 *

Summer temperature �0.60 0.23 2.45 *

Patch size 0.02 0.01 1.39 n.s.

Patch connectivity �0.00 0.00 0.72 n.s.

(b) July (R 2
m = 0.37, R2

c = 0.32–0.37)

(Intercept) 0.14 2.97 4.40 ***

Summer temperature �0.74 0.22 3.25 **

Patch size 0.01 0.01 0.62 n.s.

Patch connectivity �0.00 0.00 0.20 n.s.

2. Habitat model

(c) June (R 2
m = 0.26, R2

c = 0.30–0.50)

(Intercept) 3.53 0.48 7.04 ***

Herbs 0.02 0.01 2.00 *

Bare ground �0.06 0.04 1.47 n.s.

(d) July (R 2
m = 0.16–0.21, R 2

c = 0.55–0.56)

(Intercept) 2.93 0.40 6.99 ***

Herbs 0.02 0.01 2.40 *

Bare ground �0.03 0.02 1.43 n.s.

Mosses �0.01 0.02 0.40 n.s.

3. Synthesis model

(e) June (R 2
m = 0.35, R2

c = 0.25–0.42)

(Intercept) 7.14 4.94 1.43 n.s.

Summer temperature �0.65 0.24 2.56 *

Herbs 0.01 0.01 1.60 n.s.

(f) July (R2
m = 0.37–0.47, R 2

c = 0.37–0.50)

(Intercept) 8.52 5.85 1.45 n.s.

Summer temperature �0.78 0.21 3.55 ***

Herbs 0.02 0.01 2.03 *

Note: Model-averaged coefficients (conditional average) were derived from the top-ranked models (ΔAICC < 3). R 2
m, variance explained by fixed effects;

R 2
c, variance explained by both fixed and random effects (Nakagawa et al., 2017). n.s., not significant, p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.
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Whitman, 1990; Willott & Hassall, 1998). Macroclimatic conditions

did not differ in our study between plots of the two grassland types.

By contrast, in both grassland types, summer temperature decreased

consistently with elevation. In the GLMM analyses, it was the most

important predictor and had a negative effect on grasshopper abun-

dance. Up to now, usually the opposite was observed in temperate

grasslands; that is, high temperatures foster high grasshopper popula-

tion densities (Fartmann et al., 2012; Gardiner & Dover, 2008;

Löffler & Fartmann, 2017). However, we have to consider that the

study year was the third consecutive year with a summer drought,

which is rather unusual for temperate regions in general and the study

area in particular (see Section 2.1). As a result, in the lower elevations

of the study area, vegetation of both grassland types started to wither

already in June. Therefore, we interpret the negative relationship

between summer temperature and grasshopper abundance as being

caused by food shortage for the mostly herbivorous grasshoppers. For

regions regularly characterised by summer drought, such as the Medi-

terranean area, food availability has also been identified as an impor-

tant limiting factor of grasshopper population density (Löffler

et al., 2016).

(a)

(c) (d)

(e)

(b)

F I GU R E 3 Relationship between grasshopper densities in June (a, c) and July (b, d, e), respectively, and significant environmental parameters
of the synthesis models in plots of calcareous grasslands (a and b, N = 27) and of mesic grasslands (c–e, N = 27) (see Tables 4 and 5 for detailed
GLMM statistics). Blue hatching indicates 95% confidence intervals
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In mesic grasslands, the cover of herbs was an additional predic-

tor. Abundance of grasshoppers increased with the cover of herbs,

which was a surrogate for a low cover of grasses and vice versa, since

both variables were negatively correlated. Usually, a narrow grass-

herb ratio in grasslands is a surrogate for low land-use intensity

and high phytodiversity (Ellenberg & Leuschner, 2010; Löffler &

Fartmann, 2017). By contrast, more intensive management

(e.g., grazing several times per year with high stocking rates) promotes

a few competitive grasses at the expense of herbs (wide grass-herb

ratio) and more uniform stands (Dierschke & Briemle, 2002;

Ellenberg & Leuschner, 2010; Grime et al., 2007). In mesic grasslands

of the study area, Agrostis capillaris, Cynosurus cristatus, Festuca rubra

agg. or Lolium perenne are characteristic species benefiting from

more intensive land use (Fartmann, 2004). A higher land-use intensity

is known to have detrimental effects on grassland grasshoppers

(Fumy et al., 2021). Each management event may cause direct

mortality of grasshoppers and increases the risk of predation

through insectivorous vertebrates in the short swards (Humbert

et al., 2012; Wünsch et al., 2012; Buri et al., 2013). Additionally,

species-rich grasslands with a low land-use intensity are known

to be more resistant to summer drought (De Keersmaecker

et al., 2016; Vogel et al., 2012).

In conclusion, the effects of summer drought were the most likely

driver of grasshopper abundance in both grassland types. Its influence

even overrode the differences in habitat characteristics between cal-

careous and mesic grasslands. Extreme weather events, such as sum-

mer droughts, are expected to become more frequent due to global

warming (IPCC, 2021). Accordingly, suitable conservation strategies

that increase the resistance and resilience of temperate semi-natural

grasslands and their insect assemblages against summer drought are

highly needed.

IMPLICATIONS FOR CONSERVATION

Grasshoppers are key organisms in grassland ecosystems (Fartmann

et al., 2021a, 2021b; González del Portillo et al., 2021; Hebda

et al., 2019; Samways, 2005). Based on our study, increasing habitat

heterogeneity in semi-natural grasslands seems to be the most effec-

tive way to mitigate the negative effects of summer drought on

grasshopper assemblages. Hence, we recommend preserving and cre-

ating mosaics of heterogeneous vegetation with varying sward

heights, interspersed shrubs and some solitary trees within the grass-

lands (cf. Hartel & Plieninger, 2014; Jakobsson et al., 2020;

Kindvall, 1996; Plieninger et al., 2015; Schwarz & Fartmann, 2022).

For regions with regular summer drought, it has been shown that

wood pastures, such as the ‘dehesa’ in Spain or the ‘montado’ in

Portugal, sustain overall biodiversity and insect abundance (Hartel &

Plieninger, 2014; Plieninger et al., 2015). Both low-intensity rough

grazing and year-round grazing systems with low stocking rates seem

to be suitable tools to increase the heterogeneity in the studied

grasslands (Fraser et al., 2014; Köhler et al., 2016; Olff et al., 1999).

In mesic grasslands, a quarter of the plots were used as a meadow.

Since mowing results in short homogeneous swards directly after the

management event and thereby causes increased predation of

insects, pastures should generally be preferred over meadows. More-

over, conservation management should aim to restore calcareous and

mesic grasslands on north- and east-facing slopes (Stuhldreher &

Fartmann, 2018). This would enable the species to accommodate

extreme weather events to some degree without moving to other

habitat patches. Such measures are also assumed to increase overall

grassland biodiversity (Bonari et al., 2017; Diacon-Bolli et al., 2012;

Stuhldreher & Fartmann, 2018) and, accordingly, enhance the resis-

tance and resilience of the grassland ecosystems against global

warming (De Keersmaecker et al., 2016; Vogel et al., 2012).
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APPENDIX

T AB L E A 1 List of grasshopper species recorded in the study area

Species

Number of individuals

Nymphs Adults Sum

Chorthippus albomarginatus 0 8 8

Chorthippus biguttulus 5668 1558 7226

Chorthippus brunneus 0 8 8

Chrysochraon dispar 3 8 11

Decticus verrucivorus 0 2 2

Metrioptera brachyptera 6 25 31

Myrmeleotettix maculatus 5 3 8

Omocestus viridulus 75 46 121

Phaneroptera falcata 31 11 42

Pholidoptera griseoaptera 35 27 62

Pseudochorthippus parallelus 1930 1152 3082

Roeseliana roeselii 57 71 128

Stenobothrus lineatus 474 406 880

Stenobothrus stigmaticus 355 232 587

Tetrix bipunctata 1 18 19

Tetrix tenuicornis 6 68 74

Tettigonia cantans 4 4 8

Tettigonia viridissima 16 0 16

Sum 8666 3647 12,313

T AB L E A 2 Results of Spearman rank correlations (rs) of environmental variables in plots of calcareous grasslands

Variable Conn. Elev. Temp. Shrubs Field Grasses Herbs Litter Bare Hab. Height

Patch size �0.67*** �0.20n.s. 0.42n.s. 0.26n.s. �0.17n.s. 0.14n.s. �0.20n.s. 0.14n.s. �0.24n.s. 0.16n.s. �0.11n.s.

Connectivity (Conn.) / �0.09n.s. �0.02n.s. �0.16n.s. 0.20n.s. 0.10n.s. �0.07n.s. �0.15n.s. 0.07n.s. �0.11n.s. 0.01n.s.

Elevation (Elev.) / �0.84*** �0.38n.s. 0.31n.s. �0.25n.s. 0.28n.s. 0.20n.s. 0.11n.s. �0.21n.s. �0.28n.s.

Temperature (Temp.) / 0.32n.s. 0.04n.s. 0.34n.s. �0.30n.s. �0.07n.s. �0.31n.s. 0.06n.s. 0.37n.s.

Shrubs / �0.28n.s. 0.03n.s. �0.14n.s. �0.07n.s. �0.01n.s. 0.34n.s. 0.59**

Field layer (Field) / 0.30n.s. 0.21n.s. 0.08n.s. �0.65*** �0.60** 0.04n.s.

Grasses / �0.76*** �0.13n.s. �0.28n.s. �0.19n.s. �0.12n.s.

Herbs / �0.05n.s. 0.06n.s. �0.05n.s. 0.20n.s.

Litter / �0.56** �0.11n.s. 0.21n.s.

Bare ground (Bare) / 0.31n.s. �0.15n.s.

Habitat hetero. (Hab.) / �0.08n.s.

Note: Only intercorrelated variables are displayed. Variables with strong intercorrelations (jrsj ≥ 0.5) are highlighted in bold.

p > 0.05; **p ≤ 0.01; ***p ≤ 0.001.

Abbreviations: Habitat hetero., habitat heterogeneity; height, vegetation height; n.s., not significant.
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T AB L E A 3 Results of Spearman rank correlations (rs) of environmental variables in plots of mesic grasslands

Variable Elev. Precip. Temp. Field Grasses Herbs Bare Gravel Hab. Height

Patch size �0.23n.s. �0.11n.s. 0.06n.s. �0.06n.s. �0.20n.s. 0.25n.s. 0.23n.s. �0.21n.s. 0.17n.s. �0.31n.s.

Elevation (Elev.) / 0.79*** �0.92*** 0.06n.s. 0.09n.s. 0.01n.s. �0.16n.s. �0.00n.s. �0.58** �0.19n.s.

Precipitation (Precip.) / �0.87*** 0.20n.s. 0.18n.s. �0.07n.s. �0.25n.s. �0.17n.s. �0.43* 0.09n.s.

Temperature (Temp.) / �0.09n.s. �0.19n.s. 0.10n.s. 0.18n.s. �0.17n.s. 0.55** 0.08n.s.

Field layer (Field) / 0.47* 0.04n.s. �0.79*** �0.48* �0.63*** 0.58**

Grasses / �0.77*** �0.54** �0.42* �0.23n.s. 0.51**

Herbs / 0.11n.s. 0.06n.s. �0.08n.s. �0.34n.s.

Bare ground (Bare) / 0.52** 0.48* �0.66***

Gravel / 0.20n.s. �0.42*

Habitat hetero. (Hab.) / �0.38n.s.

Note: Only intercorrelated variables are displayed. Variables with strong intercorrelations (jrsj ≥ 0.5) are highlighted in bold. p > 0.05; **p ≤ 0.01; ***p ≤ 0.001.

Abbreviations: Habitat hetero., habitat heterogeneity; height, vegetation height; n.s., not significant.
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