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Abstract
Coastal, and to a lesser extend inland wetlands, are critical habitats for wintering shorebirds. Given the significant popula-
tion declines of most shorebird species worldwide, the current degradation of coastal habitats through climate change and 
human activities raises severe conservation concerns. In order to ensure sufficient and adequate habitats and maintain the 
populations, a thorough understanding of space use by wintering shorebirds is urgently required. However, overwintering 
strategies have rarely been investigated throughout the entire range of a shorebird species. This study thus aimed to inves-
tigate the spatio-temporal use of wintering habitats by Eurasian curlew Numenius arquata on a European scale, using a 
large international dataset. A total of 204 adult curlews were tagged with GPS devices at different wintering and breeding 
sites across Europe between 2014 and 2021, and the data were used to analyse home range size, habitat use, and phenology. 
The birds were faithful to their wintering sites throughout the winter. Their home ranges were small compared with other 
shorebirds but highly variable between individuals (533 ± 449 ha). Winter home range areas did not differ in relation to sex 
or body mass, but were weakly related to the wintering latitude, particularly linked to the many birds wintering in the Wad-
den Sea. Curlews used a high diversity of coastal and inland habitats, with higher occurrences on mudflats and saltmarshes. 
Despite the inter-individual variability in space use, the high wintering-site fidelity shown by this near-threatened species 
raises concerns about its capacity to respond to environmental modifications in coastal regions.
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Introduction

Many bird species use coastal habitats during some or all 
of their life cycle, including long-distance migrants that 
often rely on these areas for breeding, wintering, or stop-
over during migration (Hayman et al. 1986; Delany et al. 
2009). However, various economic, social, and environ-
mental pressures faced by coastal ecosystems may lead to a 
massive degradation or even a total loss of coastal habitats 
(Crain et al. 2009; Schutyser 2010; Nichols et al. 2019), 
thus reducing the sizes of the available habitats for bird and 
other animal communities (Feagin et al. 2005). As a result, 
more than two thirds of European coastal habitats and half 
of the species that use them currently have an unfavourable 

conservation status (Schutyser 2010). Understanding the pat-
terns of coastal habitat use by birds is therefore crucial to 
inform bird conservation and management decisions (Mace 
et al. 1983; Weller 1999).

Knowledge about individual home ranges (HRs) is a 
major tool in assessing the patterns of space use by ani-
mals (Moorcroft 2012; van Moorter et al. 2016). A HR is 
defined as the area throughout which an individual carries 
out its regular activities such as foraging, mating, and rear-
ing its young (Burt 1943; Powell 2000). The size and shape 
of an animal’s HR are primarily driven by the distribution 
and availability of food resources (Brown 1975; Schoener 
1983). However, HRs may also be directly affected by many 
other factors, such as age, sex, body mass, habitat structure, 
and weather conditions (Mace et al. 1983; Rolando 2002; 
Ottaviani et al. 2006; O’Donnell and Delbarco-Trillo 2020). 
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In recent decades, biologging, i.e., the use of autonomous 
bird-borne devices such as GPS devices, has offered cost-
effective opportunities to track animal HRs with high spatial 
and temporal resolutions (Hart and Hyrenbach 2010).

Migratory shorebirds visit a wide range of coastal habitats 
and inland wetlands during winter, i.e., outside their breeding 
and migration periods (Hayman et al. 1986; van de Kam et al. 
2004; Delany et al. 2009; Conklin et al. 2014). They usually 
use intertidal habitats for feeding at low tide and supratidal 
habitats for roosting at high tide (Rogers 2003; Choi et al. 
2014; Jourdan et al. 2021). The current degradation of coastal 
ecosystems thus has potentially important implications for 
shorebirds (Galbraith et al. 2002; Martin et al. 2007; Runge 
et al. 2014; Zurell et al. 2018; Koleček et al. 2021), with 
more than half of all shorebird species showing declining 
populations (Delany et al. 2009; Pearce-Higgins et al. 2017). 
The loss of their favoured habitats (Galbraith et al. 2002; 
Koleček et al. 2021; Santos et al. 2023) including intertidal 
mudflats (Evans and Pienkowski 1983; Studds et al. 2017), 
as well as reduced prey availability (Duijns et al. 2017), seem 
to be the main drivers within wintering grounds. In addition, 
high predation pressures (Van Den Hout et al. 2008; Dekker 
and Drever 2016), sea-level rises (Galbraith et al. 2002; Iwa-
mura et al. 2013), and increasing human activities (Burger 
et al. 2004; Palacios et al. 2022) may also affect their winter 
survival (Goss-Custard 1980). Human activities in inland 
wintering habitats, such as drainage and agricultural inten-
sification, also degrade habitats used for feeding and rest-
ing (Hayman et al. 1986; reviews in Sutherland et al. 2012). 
Low-quality wintering habitats may have carry-over effects, 
such as reduced breeding success (Gill et al. 2001; Gunnars-
son et al. 2005), thereby affecting the fitness and dynamics 
of the populations (Pienkowski and Evans 1984; Marra and 
Holmes 2001).

The Eurasian curlew, including the subspecies Numenius 
arquata arquata (hereafter curlew), has notably undergone 
rapid population declines across Europe, with only an esti-
mated 212,000–292,000 breeding pairs (Birdlife International 
2022), and is therefore listed as Near-Threatened on a global 
scale. These declines are primarily driven by low reproductive 
success, and the trend can thus only be reversed by increasing 
productivity and/or adult survival (Brown 2015). An overview 
of the spatio-temporal use of wintering habitats by curlews is 
therefore required to identify the potential threats faced by the 
species in their wintering grounds, and to guide appropriate 
conservation measures. Few studies to date have focused on 
specific wintering sites used by curlews (Townshend 1981a; 
Mander et al. 2022); however, large-scale investigations cov-
ering the entire wintering range of the subspecies, extending 
from Western Europe to the Balkans and from the British 
Isles to Northwest Africa (Delany et al. 2009), are needed 
to provide a comprehensive understanding of habitat use by 

wintering curlews and to support the implementation of effi-
cient strategic conservation decisions (Koleček et al. 2021).

In this study, we equipped 204 curlews throughout West-
ern Europe with GPS tags, with the aim of providing the first 
data on the spatio-temporal use of wintering sites by curlews 
across their range. We first described individual spatial use 
by focusing on geographic distribution, local space use, and 
habitat use. Given that most shorebird species (including cur-
lews) are predators specialized for feeding on intertidal mud-
flats during the winter (Lack 1986; van de Kam et al. 2004; 
Colwell 2010), we predicted that individuals would primar-
ily utilize coastal habitats, particularly mudflats, during this 
period. We also investigated the effects of sex (Rolando 
2002), body mass (Schoener 1983; Ottaviani et al. 2006), 
and latitude of the wintering site (Harestad and Bunnel 1979) 
on the sizes of individual wintering HRs, and analysed the 
wintering phenology of the species (i.e., beginning, end, and 
duration of the wintering period) according to the latitude of 
the wintering sites. We hypothesized that curlews carried out 
chain migration (i.e. birds wintering at northern sites breed at 
higher latitudes; Pederson et al. 2022; Kämpfer et al. 2023), 
and therefore predicted that birds wintering in more northern 
areas would depart later to avoid unfavourable conditions at 
their breeding grounds (Schwemmer et al. 2021), but would 
have similar wintering durations.

Materials and Methods

Study Area and Tagging of Curlews

We tagged 204 adult curlews in seven countries and 16 sites 
across eight programs in Europe between 2014 and 2021 
(four German, one Polish, one Estonian, and two French, one 
of which included tagged birds in France, Estonia, Finland, 
the Netherlands, and the United Kingdom) (Fig. 1, Table 1). 
Birds were caught either at their breeding grounds (n = 145) 
using nets (scoop, clap, or mist nets) or cage traps placed at 
the nest, or at their wintering grounds (n = 59) in the German 
Wadden Sea and in French Pertuis Charentais using mist 
nets placed at high-tide roosts (Table 1, Fig. 1).

Birds were ringed and weighed at the time of capture. 
Bill, wing, and tarsus lengths were measured to the nearest 
mm (Redfern and Clark 2001) and age was estimated based 
on their plumage patterns (Prater et al. 1977). Individuals 
captured as juveniles that were subsequently tracked for sev-
eral years were considered as adults after their first migration 
to their breeding area. Sex was determined by genetic analy-
sis of blood samples (n = 28; Tauros Diagnostics, Berlin, 
Germany), morphologically based on bill length (shorter in 
males than in females, n = 164; 144.5 ± 10.6 mm in females 
and 116.7 ± 7.5 mm in males; Summers et al. 2013), or 
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by visual inspection of relative size at breeding catching 
sites (n = 8). There was no difference in sex determination 
between the molecular and morphometric methods (n = 27) 
(Pederson et al. 2022). The tracked birds included 111 males 
and 90 females, and three individuals could not be sexed.

Thirteen different types of solar GPS tags from four man-
ufacturers were used (Table 1), including five models from 
Ornitela, Lithuania (OT-10 (10 g); OT-15 (15 g); OT-20 
(20 g); OT-E10 (12 g); OT-E20B (20 g)), three by Ecotone, 
Poland (Sterna (7.5 g); Saker L (17 g); Skua (17 g)), one 
from Milsar, Poland (M-9 (16 g)), and four from e-obs, Ger-
many (e-obs (14,5 g, 27 g, 28 g, 40 g)). None of the tags 
weighed > 5% of the bird’s body mass (1.6 ± 0.6%, n = 178, 
not all birds were weighed) (Cochran 1980). The devices were 
positioned using the “wing-loop” (n = 139) (Guillaumet et al. 
2011) or “leg-loop” method (n = 65) (Mallory and Gilbert 
2008). The bird’s movements were tracked at time intervals 
of 1 min to 1 h, according to the model and battery charge.

Data were recorded for multiple years for some individu-
als, but a single wintering period per bird was selected in 
this study (i.e. the longest period recorded) (Mitchell et al. 

2019). Among the retained wintering periods, 75 were com-
plete and 129 were incomplete due to loss or malfunctioning 
of the GPS tags or bird mortality.

Wintering Home Range

Adults with a minimum of 2000 GPS fixes recorded during 
a minimum of 90 wintering days (Jourdan et al. 2021) were 
selected for HR analyses (n = 172).

The location of the first wintering roost was determined 
visually using satellite images as the first area where birds 
stayed after their post-breeding migration. The start of the 
wintering period was defined as the time of arrival at the 
first wintering roost. The wintering period ended when the 
birds first moved > 20 km away from the wintering area to 
start their pre-breeding migration. If the birds did not initi-
ate pre-breeding migration, GPS fixes located > 20 km from 
the first wintering roost for up to 7 days were considered as 
belonging to another wintering site.

Space use was investigated by estimating the utilization 
distribution (UD), i.e., the probability density of an animal 

Fig. 1   Locations of tagging 
sites for curlews tagged during 
the winter or breeding season
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being present in a given area (Jennrich and Turner 1969). 
The UD was calculated by the kernel estimation method 
(kde; van Winkle 1975) using the 'kernelUD' function ('ade-
habitatHR' package, Calenge 2023) in R (version 4.0.5, R 
Core Team 2021). The HR (95% kde) and core area (CA: 
50% kde) were calculated for each wintering site for each 
individual (Worton 1989). The HR was defined as the area 
throughout which an individual carried out its regular activi-
ties (Burt 1943; Powell 2000), here feeding and roosting 
(Harris et al. 1990), and a CA corresponded to the preferred 
area used by an animal inside its HR, from which a high 
proportion of the locational records was obtained.

The accuracy of the kernel representation was determined 
by a single smoothing factor (h), allowing us to compare the 
HRs of all tracked individuals. To determine h, we visually 
compared the kernels of several individuals with more- or 
less-dispersed HRs (Schuler et al. 2014). An h of 80 m was 
determined to be the best compromise between under- and 
over-smoothing and was therefore used in this study. The 
cell size was adjusted to 20 m because of a minimum accu-
racy of all the GPS tags of 10 m. Albers equal-area projec-
tion was used to produce HRs due to the range of winter-
ing site latitudes (World Geodetic System 1984, minimum 
latitude = 32°53′58.45" N; maximum latitude = 57°37′21.18" 
N) and longitudes (mean longitude = 0°30′00.89" W). This 
equivalent projection allowed us to preserve the surface areas 
locally (Snyder 1993) and compare the HR sizes for all indi-
viduals, regardless of the latitude of their wintering sites. In 
view of the high fidelity of curlews to their wintering sites 
across years (Bainbridge and Minton 1978; Delany et al. 
2009; Brown 2015; Schwemmer et al. 2016; Sanders and Rees 
2018), we compared the HRs of all individuals regardless of 
the year. For birds using both coastal and inland habitats dur-
ing the same wintering period, HRs were produced separately 
at both locations. All maps were generated using QGIS soft-
ware (3.10 A Coruña, QGIS Development Team 2019).

Habitat Identification

Four wintering site statuses were attributed to the 204 indi-
viduals: birds were considered as “coastal” if they wintered 
along the coastline; “inland” if they only used terrestrial habi-
tats ≥ 2 km from the coast; “coastal and inland” if they visited 
coastal and inland areas simultaneously, with a CA covering 
both; and “coastal then inland” if they used coastal habitats 
before switching inland during their wintering period.

The main habitats used by wintering curlews were deter-
mined visually by cross-referencing the HR of each bird with 
satellite images from the same wintering year extracted from 
Google Earth. Eight habitats were characterized according to 
the European nature information system (EUNIS) classification 
(European Topic Centre on Biological Diversity 2012): mudflats 
(A2.3), saltmarshes (A2.5), marshes (C1.5), sandflats (A2.2), 

meadows (E2.2), crops (I1), saltworks (J5.12), and rocky shores 
(A1.4) (Fig. 2). An “other” category was created to include spe-
cifically human infrastructures. The presence or absence of these 
habitats within the HR was recorded but not quantified for each 
individual.

Statistical Analyses

We distinguished between birds equipped in winter and 
those equipped in summer, to avoid overestimating the 
weights of the two study sites where birds were tagged dur-
ing winter (Fig. 1).

All statistical analyses were performed using R software 
(version 4.0.5, R Core Team 2021). The mean (± standard 
deviation) wintering duration, arrival date, departure date, and 
HR size were compared among individuals wintering in the 
Wadden Sea, the Pertuis Charentais, and at other wintering 
sites, using Kruskal–Wallis rank sum tests using the ‘kruskal.
test’ function (‘stats’ package, R Core Team 2021). Curlews 
wintering in the Wadden Sea and the Pertuis Charentais were 
separated from other birds because of the high respective num-
bers of individuals (n = 39 and n = 33, respectively). Groups 
with significantly different medians were determined by non-
parametric Dunn’s post hoc tests using the DunnTest function 
(‘DescTools’ package, Signorell 2023). Relationships between 
the wintering site latitude and the duration and end date of the 
birds’ wintering period were determined by Kendall’s correla-
tion tests using the ‘cor.test’ function (‘stats’ package).

The effects of sex (Rolando 2002), body mass (Schoener 
1968; Ottaviani et al. 2006), wintering-site latitude (Harestad 
and Bunnel 1979), and wintering duration on individual HR 
size were jointly tested by generalized additive models (GAMs) 
using the ‘gam’ function (‘mgcv’ package, Wood 2017). 
Because body mass is highly collinear with sex, with females 
being bigger than males (Prater et al. 1977; Cramp et al. 1983), 
the observed body mass values were replaced by the deviations 
of the values from the sex-specific mean values (842.7 ± 113.4 g 
in females, 705.9 ± 83.0 g in males). The non-binomial distribu-
tion was recognized as the most appropriate distribution after 
comparing the Akaike information criterion values of different 
distribution families and was therefore used to fit the model.

Results

Distribution of Tracked Curlews

Tracked curlews wintered at 66 sites spread over a large 
geographical area from Morocco (32°58′44" N) to Scotland 
(57°36′07" N) (Fig. 3, Online Resource 1). Most curlews were 
“coastal” (85.3%), while some were “coastal and inland” 
(10.3%), “coastal then inland” (2.4%), or “inland” (2.0%) 
(Figs. 3 and 4).
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Only 13 of the 204 birds (6.4%) moved to another site 
during the wintering period (mean distance: 265 ± 258 km; 
range: 40–1,003  km), either permanently (n = 3) or by 
exploiting one (n = 4) or two (n = 1) other sites before return-
ing to their original site at the end of the wintering period. 
Five of these birds that moved were not tracked over the 
entire wintering period and it was therefore unknown if 
they returned to their original site before starting their pre-
breeding migration. Nine of the moving birds used coastal 
and inland habitats, while the other four only used coastal 
habitats.

Wintering Phenology

The wintering period lasted an average of 8.5 months 
(mean: 263 ± 20 days, n = 75), starting between May and 
August (May 30 – Aug 2; n = 176) and ending between 
February and April (Feb 3 – Apr 30; n = 93) (Table 2, 
Fig. 5a). The wintering durations were longer in the Wad-
den Sea and the Pertuis Charentais (Dunn’s test, Wad-
den Sea: mean rank difference = 32.9, P < 0.001; Pertuis 
Charentais: mean rank difference = 25.56, P < 0.01) due 
to later pre-breeding migration departures (Wadden Sea: 

mean rank difference = 49.36, P < 0.001; Pertuis Charen-
tais: mean rank difference = 34.02, P < 0.001). Birds 
tagged during winter (i.e. at the Wadden Sea and Pertuis 
Charentais) mostly left their wintering sites to reach north-
ern breeding sites in Russia and Finland (Wadden Sea 
70.7% and Pertuis Charentais 65.5%) (Fig. 5b). Moreo-
ver, individuals in the Wadden Sea started their winter-
ing period significantly later than individuals wintering 
in other sites (mean rank difference = 31.594, P < 0.01) 
(Table 2), except for the Pertuis Charentais (P = 0.457).

The wintering duration was significantly longer for 
birds that wintered further north (Kendall’s correlation 
test, tau = 298, P < 0.001) (Online Resource 2a). This ten-
dency can be explained by a late departure to the breed-
ing grounds for some northern-wintering birds (tau = 331, 
P < 0.001) (Online Resource 2b), especially for birds win-
tering in the Wadden Sea.

HR Size

Curlews exploited average HRs of 533 ± 449 ha, with 
high variability between individuals (range: 46–2,397 ha, 
n = 172) and mean CA surfaces of 62 ± 52  ha (range: 

Fig. 2   Habitats used by wintering curlews in this study
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Fig. 3   Location of wintering 
sites for all tracked curlews and 
their coastal or inland status 
(n = 204)

Fig. 4   Numbers of curlews 
tagged during the breeding and 
wintering periods according to 
coastal or inland status

Table 2   Duration and arrival and departure dates (mean ± stand-
ard deviation (n) (range)) of wintering periods for curlews tagged at 
either their wintering (Wadden Sea or Pertuis Charentais) or breeding 

grounds (Others). Values with shared letters are not significantly dif-
ferent from each other (P > 0.05)

Wintering ground Wintering duration (days) Arrival date Departure date

Wadden Sea 283 ± 14 (n = 18)a

(239–312)
Jul 2 ± 13 (n = 35)c

(Jun 9 – Jul 30)
Apr 17 ± 12 (n = 22)e

(Mar 3 – Apr 30)
Pertuis Charentais 277 ± 21 (n = 8)a

(233–298)
Jun 27 ± 12 (n = 15)cd

(May 31 – Jul 14)
Apr 6 ± 13 (n = 22)e

(Mar 2 – Apr 22)
Other sites 254 ± 15 (n = 49)b

(224–282)
Jun 23 ± 12 (n = 126)d

(May 30 – Aug 2)
Mar 3 ± 15 (n = 49)f

(Feb 3 – Apr 30)
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5–296 ha, n = 172). Birds wintering in the Wadden Sea 
had significantly larger HRs (mean: 902 ± 523 ha; range: 
201–2,397 ha, n = 39) than those wintering in the Pertuis 
Charentais (mean: 466 ± 355 ha; range: 125–1,927 ha, 
n = 33, Dunn’s test, mean rank difference = 42.95, 
P < 0.001) and those in other wintering sites (mean: 
432 ± 391 ha; range:46–2,170 ha, n = 100, mean rank dif-
ference =  − 54.78, P < 0.001) (Fig. 6).

Wintering-site latitude was positively related to HR size 
(GAM: Z = 4.02, P < 0.001) (Table 3). However, winter-
ing duration (P = 0.059), sex (P = 0.760), and body mass 
(P = 0.341) did not explain the observed high variability in 
HR size (Table 3).

Habitat Use

Curlews used an average of 2.8 ± 1.0 (range: 1–6) habitat types 
(defined according to the EUNIS list, see Methods) considering 

HR surface (95% kde) and 2.3 ± 0.8 (range: 1–5) habitats con-
sidering CA surface (50% kde) (see Fig. 7 for examples). More 
than half of the individuals exploited mudflats (n = 137) and 
saltmarshes (n = 125), even considering only birds tagged dur-
ing breeding (n = 78 and n = 84, respectively; Fig. 8). More than 
a quarter of the birds also exploited marshes (n = 58), sandflats 
(n = 54), and meadows (n = 48), while crops (n = 27), saltworks 
(n = 16), and rocky shores (n = 13) were less frequently used. 
Only a few individuals exploited human infrastructures such 
as artificial green spaces around airport runways (n = 2), sports 
grounds (n = 2), harbours (n = 1), and mines (n = 1).

Mixed Habitat Use

The 21 “coastal and inland” birds wintered at 14 different 
sites. Most of the 18 birds with enough GPS fixes to define 
their HRs used meadows in addition to mudflats (n = 11) 
or sandflats (n = 6). They used larger spaces to carry out 
their activities in coastal compared with inland areas (mean 
coastal HR size: 445 ± 359 ha; range: 21–1,034 ha; mean 
inland HR size: 247 ± 207 ha; range: 71–1,042 ha; Wilcox-
on’s signed rank exact test, V = 159, P < 0.05).

The five “coastal then inland” birds initially wintered at four 
different wintering sites (Fig. 9). Most birds partially switched 

Fig. 5   Phenology of wintering 
periods for individuals tagged 
during the breeding and winter-
ing periods (represented by each 
horizontal line) according to (a) 
wintering-site latitude and (b) 
breeding-site latitude (only for 
individuals with entire winter-
ing period recorded, n = 75)

Fig. 6   HR sizes for curlews tagged during the breeding and wintering 
periods wintering in the Pertuis Charentais, Wadden Sea, and other 
wintering sites. Medians, 95% CIs, and number of individuals per cat-
egory (n) are shown

Table 3   GAM results showing partial effects of selective explana-
tory variables on HR size in wintering curlews. Relative proportion of 
overall variance explained = 11.7%. Std. error = standard error

Significance of individual model predictors: *P < 0.05; **P < 0.01; 
***P < 0.001

Parametric coefficient Estimate Std. error Z value P value

Intercept 5.79 0.25 22.79 ***
Sex (male) 0.04 0.12 0.31 0.76
Body mass 0.00 0.00 0.95 0.34
Latitude 0.05 0.01 4.02 ***
Duration 0.00 0.00 1.89 0.06
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Fig. 7   Example HRs for each 
dominant habitat. a Mudflat, b 
saltmarsh, c marsh, d sandflat, 
e meadow, f crops, g saltworks, 
and h rocky shore
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inland between September (n = 1) and October (n = 3), although 
one bird switched inland at the end of July (DE_071) (Fig. 9). 
All individuals used both coastal and inland habitats for some 
time before staying in inland habitats.

Discussion

The present study provides an overview of the spatial distri-
bution and phenology of wintering curlews throughout the 
species’ range distribution. As expected, the birds’ wintering 

duration was driven by the latitude of their breeding ground, 
with northern breeders leaving their wintering sites later to 
avoid snow cover at their breeding grounds (Amélineau et al. 
2021; Schwemmer et al. 2021). The HR sizes were variable 
and could be partly attributed to the latitude of their respec-
tive wintering site; however, this trend was mainly explained 
by Wadden Sea birds, which had very large HRs. Curlews 
used a wide range of coastal and inland habitats, especially 
mudflats containing their preferred prey (Goss-Custard et al. 
1977; Schwemmer et al. 2012; Bocher et al. 2014) and salt-
marshes used for both feeding and resting.

Fig. 8   Number of individuals 
tagged during the breeding and 
wintering periods that used 
different habitat types during 
winter. Birds used 1–6 habitats 
during the individual study 
periods

Fig. 9   Coastal and inland HRs for the five curlews that shifted from coastal to inland habitats during the wintering period
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Large‑scale Distribution and Wintering Phenology

The current results showed that, despite chain migration, 
curlews from the same breeding populations wintered at 
sites distributed over a wide latitudinal gradient; indeed, 
birds exploited a large geographical area covering most of 
the subspecies’ range (Delany et al. 2009; Kämpfer et al. 
2023). We therefore assumed that the study included a repre-
sentative sample of the wintering population of the subspe-
cies, allowing us to define the main habitats of the different 
wintering populations.

This study confirmed an earlier investigation of the distri-
bution of wintering curlews along the Atlantic coasts of West 
Europe and Northwest Africa (Brown 2015). The latitudinal 
distribution seems to be related to the chain-migration pat-
tern shown by curlews (Pederson et al. 2022; Kämpfer et al. 
2023), with birds breeding at more northern latitudes win-
tering further north and west, and birds breeding at lower 
latitudes wintering further south (Lundberg and Alerstam 
1986; Smith et al. 2003). Birds tagged during breeding in 
France and South Germany were predominantly found to 
winter on the coast of the Iberian Peninsula, although the 
proportion of the whole wintering population in this region 
is considered to be very low (1%; Birdlife International 
2004; Brown 2015).

Our results also demonstrated that most curlews inhab-
ited a single site during their wintering period. Curlews 
were thus largely faithful to the same site throughout the 
wintering period, as shown previously on the basis of 
single wintering sites (Brown 2015; Mander et al. 2022), 
although the current study provides the first evidence for 
this on a multi-population scale. However, a few birds 
changed sites or visited several sites during the winter, 
indicating a degree of individual flexibility in habitat 
use. A decrease in site quality, e.g., due to a depletion of 
food resources, can thus cause individuals to redistribute 
according to the buffer effect (Gill et al. 2001). Gill et al. 
(2007) and Jourdan et al. (2022) described a similar pat-
tern in black-tailed godwits Limosa limosa, which used 
two distinct functional sites during the wintering period. 
However, unlike godwits, curlews show high intra-annual 
site fidelity at their wintering sites (Bainbridge and Min-
ton 1978; Sanders and Rees 2018) and more than half of 
the site changes were large-scale changes (i.e., > 100 km). 
Studies covering consecutive years are needed to enable 
us to determine if this nomadic behaviour is triggered 
endogenously or is the result of exogenous factors, such 
as bad weather or anthropogenic disturbances (Piersma 
and Lindström 2004; Rehfisch et al. 2004; Maclean et al. 
2008). However, winters were mild to normal during the 
bird-tracking period (Jones et al. 1997), and colder winters 
in previous decades could have led to more birds changing 
wintering sites during the wintering period.

The wintering period ended later in birds with more-
northerly breeding sites. On average, birds from the Wad-
den Sea and the Pertuis Charentais began their pre-breeding 
migration between early and mid-April, while birds from 
other wintering sites that bred mainly at southern latitudes 
began their pre-breeding migration on average in early 
March. This confirms the effect of breeding-site latitude on 
the pre-breeding migration of the species (Amélineau et al. 
2021; Schwemmer et al. 2021). Snowmelt, and therefore 
access to trophic resources, occurs later in more-northerly 
regions (Reneerkens et al. 2016; Saalfeld et al. 2019), and 
the later departure of birds breeding at higher latitudes is 
likely to allow these birds to benefit from resources as soon 
as they arrive at their breeding sites and thus increase their 
chance of reproductive success. Accordingly, the tested 
relationship between wintering latitude and the date of pre-
breeding migration departure appears to be linked to the fact 
that birds that breed further north also winter further north 
(Pederson et al. 2022).

HRs of Wintering Curlews

Curlews had mean HRs of 533 ± 449 ha. Similar-sized HRs 
have been reported for other shorebird species, includ-
ing American oystercatchers Haematopus palliates (279 
to 7,029 ha; Loring et  al. 2017) and bar-tailed godwits 
Limosa lapponica (248 to 581 ha; Jourdan et al. 2021). 
However, some waders such as dunlin Calidris alpina 
(1,080–56,470 ha; Sanzenbacher and Haig 2002; Choi et al. 
2014) and red knot Calidris canutus (1,000–80,000 ha; 
Piersma et al. 1993; Leyrer et al. 2006), have much larger 
HRs. The differing sizes of HRs for different wader species 
can mostly be explained by differences in prey availability 
and/or species-specific differences in the use of foraging 
habitats (Piersma et al. 1993; Choi et al. 2014). Dunlin and 
red knot are gregarious and thus move towards prey-rich 
habitats according to a group decision, and their HRs are 
therefore very large (van Gils et al. 2015). Conversely, more-
territorial species use prey locally across different habitats 
to avoid strong intraspecific competition for the trophic 
resource, and their HRs are thus more restricted (Jourdan 
et al. 2021). The small HRs of curlews compared with other 
gregarious shorebirds and the high plasticity of individu-
als in using different habitats suggest that curlews are only 
slightly gregarious on a small-scale during the wintering 
period; indeed some studies even showed that curlews exhib-
ited territorial behaviour in winter (Ens 1979, 1983; Ens and 
Zwarts 1980; Townshend 1981b; Colwell 2000).

The large number of wintering sites used by the tracked 
curlews did not allow us to distinguish between roosting and 
feeding habitats or to quantify the proportion of each habi-
tat within the HR. We therefore examined other factors that 
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might influence the size of the curlews’ wintering HR. Our 
results confirmed that HR size was not affected by the winter-
ing duration, thus allowing us to compare the spaces used by 
all birds, regardless of the tracking duration. In addition, the 
present study confirmed that curlews were faithful to their 
respective wintering sites within a winter period, and large-
scale movements of individuals were rare; notably, only a few 
birds shifted from coastal to inland habitats. We aimed to 
minimize the occurrence of unregistered movements by only 
selecting birds with at least 2,000 GPS fixes covering 90 days 
of wintering for HR analyses, corresponding to a much higher 
number of GPS tracking fixes and days than most telemetric 
bird-tracking studies (e.g. Anderson et al. 2019; Campion 
et al. 2020; Jourdan et al. 2021; Mander et al. 2022).

The high inter-individual variability in HR size was partly 
explained by latitude, with northern birds having larger HRs, 
and Wadden Sea birds having notably larger HRs. This 
pattern has also been observed in mammals in relation to 
decreasing primary productivity with latitude (Heip et al. 
1992; Henkel and Nelson 2018). However, Bocher et al. 
(2007) found no clear north–south gradient in the composi-
tion or size of most common mollusc species (i.e., potential 
prey for curlews) in intertidal areas in Northwest Europe. 
Even if the density of each species varies with the latitude, 
with some species being more abundant in the south and 
others in the north, this should not affect birds that mani-
fest food-expediency behaviour (Schwemmer et al. 2012). 
It is therefore likely that this pattern can be explained by 
the large number of tracked individuals using the Wadden 
Sea, suggesting that other parameters are involved. Indeed, 
the Wadden Sea hosts 10–12 million waders every year 
(Meltofte et al. 1994), including more than 250,000 winter-
ing or resting curlews (Kleefstra et al. 2022). Curlews may 
therefore need to exploit a larger area to avoid high levels of 
competition for the trophic resources. Comparative studies 
of prey abundance within different wintering sites in rela-
tion to HR size would enable us to draw further conclusions 
on this issue.

In line with the results of Mander et al. (2022) for the 
Humber Estuary (UK), the present study revealed no sex-
specific difference in HR size, which was unexpected given 
the differences in bill length and body size between male 
and female curlews (Cramp et al. 1983). Indeed, Alves et al. 
(2013) showed that sexual dimorphism in black-tailed god-
wits was related to different prey accessibility, resulting in 
a spatial segregation of individuals on intertidal flats. The 
same pattern of habitat use was observed in colour-ringed 
curlews, with longer-billed females preferentially foraging 
on intertidal flats and shorter-billed males on grasslands 
(Townshend 1981a). However, the larger HRs of Wadden 
Sea birds suggest that curlews use of space might be partly 
site-dependent, potentially masking any sex effect. Similarly, 
body mass did not account for the variability in HR size. 

Body mass reflects the quantity and quality of food needed 
to meet the individual’s energetic requirements (Ottaviani 
et al. 2006), and HR size should thus vary in relation to 
both body mass and resource density (Haskell et al. 2002). 
However, further studies combining all the factors known to 
affect the HR size of birds at a given site are needed to con-
firm our results, especially concerning the distribution and 
availability of food resources (Brown 1975; Schoener 1983).

Coastal vs. Inland Habitat Use

Curlews strongly favoured coastal habitats, especially inter-
tidal mudflats, during the wintering period, confirming that 
curlews, like many wintering shorebirds, are specialized 
predators for prey items found on intertidal mudflats (van 
de Kam et al. 2004; Colwell 2010). Indeed, polychaetes, 
crustaceans, and bivalves found in mudflats represent major 
components of the curlews’ diet (Goss-Custard et al. 1977; 
Schwemmer et al. 2012; Bocher et al. 2014). Although the 
high number of individuals tagged directly on mudflats dur-
ing winter might have overestimated the use of this habitat, 
this trend remained when the analysis was restricted to birds 
caught during the breeding period.

Our results highlight the fact that individual curlews 
can use several habitats at their respective wintering sites 
simultaneously. For many birds, the use of foraging habi-
tats depends on individual preferences, with the preferred 
habitats often selected first and other habitats only being 
used when the first ones are no longer available (Navedo 
et al. 2013), in situations where trophic resources are no 
longer optimal (Vickery et al. 1995) or to prevent excessive 
competition in feeding areas (Vahl et al. 2005). The current 
study was unable to determine if the habitats were used for 
foraging or resting; however, it is likely that curlews used 
the available habitats to rest during high tide, thus favouring 
muddy and sandy substrates for feeding at low tide. This is 
notably the case for marshes in the Pertuis Charentais, which 
are mainly used as roosts by many shorebirds at high tide 
(Jourdan et al. 2021), and for saltmarshes in the Wadden Sea, 
which are also known to be used as roosts at high tide, with 
individuals favouring the extensive mudflat for feeding at 
low tide (Koffijberg et al. 2003). Nevertheless, saltmarshes 
can fulfil both functions, as shown by Calbrade et al. (2008) 
in the Colne Estuary (UK). This suggests that curlews can 
accommodate different foraging habitats and are therefore 
not obligate mudflat specialists like other shorebirds, such as 
red knot (Piersma 1994; Calbrade et al. 2008). We therefore 
expect that curlews may be more flexible than other waders 
in escaping the coastal squeeze due to climate change, given 
that sufficient terrestrial options are also available.

Some individuals used inland habitats, especially mead-
ows, in addition to coastal ones during winter. This behav-
iour is relatively common and has also been shown in other 
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shorebird species (Caldow et al. 1999; Masero and Pérez-
Hurtado 2001; Smart and Gill 2003; Gunnarsson et  al. 
2005). Human disturbance in exposed intertidal areas, such 
as shellfish fishing, can reduce the time allocated by birds for 
food prospecting, as well as depleting the available trophic 
resources (Navedo and Masero 2007; Stillman et al. 2007). 
Shorebirds are thus likely to extend their feeding grounds 
to inland areas in order to meet their daily energy demands 
(Navedo et al. 2013). Moreover, Townshend (1981a) showed 
that curlews could switch to inland foraging habitats when 
the availability of polychaetes in intertidal habitats declined 
due to decreasing temperatures. The use of meadows by 
foraging waders would not necessarily be disadvantageous, 
even if the density of prey items was lower than in the 
coastal habitats (Gunnarsson et al. 2005). The tidal rhythm 
allows the birds to ingest several small portions of food 
throughout the day (Gutiérrez et al. 2012), and in addition, 
curlews mainly use meadows located near the coast, which 
freeze less during winter than inland meadows (DeCourcy 
Ward 1906). Earthworms, which represent an important 
food source for inland-breeding curlews (Berg 1993), are 
therefore often available to the birds (Evans and Guild 1947; 
Gerard 1967). Meadows may thus act as supplemental forag-
ing habitats for many individuals during winter (Urfi et al. 
1996; Smart and Gill 2003), even if few birds settle there 
during all or part of their wintering period.

Conclusion

The present study demonstrates that curlews are faithful to 
their respective wintering sites throughout the wintering 
period. In addition, the sizes of the birds’ HRs are small 
compared with gregarious shorebirds, but are also highly 
variable between individuals. Although HR size was appar-
ently unaffected by sex and body mass, we cannot exclude 
the possibility that latitude might play a minor role. Curlews 
can also exploit a wide range of coastal and inland habitats, 
but most birds utilize mudflats and saltmarshes. This high 
inter-individual variability in the use of space could help the 
species to respond to global climate change; however, their 
high site fidelity during winter suggests that many individu-
als might be unable to adapt their habitat use or change sites 
if necessary. Further investigations on the specific selec-
tion of foraging habitats over several consecutive years are 
needed to provide quantitative data to support these results.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s13157-​023-​01728-w.
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